ORIGINAL ARTICLE
Utilising tourist pictures to generate 3D models and automatic multi-view stereo network design
 
More details
Hide details
1
Department of Civil Engineering, Galgotias College of Engineering, Greater Noida 201310, India
 
2
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém H, 8200, Hungary
 
 
Publication date: 2023-09-30
 
 
Journal of Modern Technologies for Cultural Heritage Preservation 2023;2(3)
 
KEYWORDS
ABSTRACT
The design of image networks plays a pivotal role in image-based 3D shape reconstruction and data processing, particularly when applying combined SfM/MVS methods. This paper presents an approach to designing and planning a multi-view images network for cultural heritage objects and sites based on a rough 3D model generated from public datasets of tourist images. Images for three famous cultural heritage buildings in India, namely Taj Mahal, Qutub Minar and Hawa Mahal, were used in this study to achieve the targeted goal. The results obtained confirmed that the Agisoft Metashape software made it possible to acceptably reconstruct the entire body of the studied structures. However, it the results showed when generating point clouds and 3D models of slender objects, i.e., the Qutub Minar, it is not possible to use only images acquired from the ground since most tourists wishing to correctly represent the shape take tilted images. For this reason, it is necessary to use videos or photos from UAVs. Generally, it can be concluded that the adopted approach in this study is a promising alternative for the conventional methods that are currently used for the shape reconstruction of cultural heritage objects and sites.
 
REFERENCES (15)
1.
Kuzyk, Z. The use of modern measurement methods in the inventory of endangered cultural heritage objects in Lviv. 2023.
 
2.
Tobiasz, A.; Markiewicz, J.; Lapinski, S.; Nikel, J.; Kot, P.; Muradov, M. Review of Methods for Documentation, Management, and Sustainability of Cultural Heritage. Case Study: Museum of King Jan III's Palace at Wilanów. Sustain. 2019, 11, doi:10.3390/su11247046.
 
3.
Muradov, M.; Kot, P.; Markiewicz, J.; Łapiński, S.; Tobiasz, A.; Onisk, K.; Shaw, A.; Hashim, K.; Zawieska, D.; Mohi-Ud-Din, G. Non destructive system for in-wall moisture assessment of cultural heritage buildings. Meas. J. Int. Meas. Confed. 2022, 203, doi:10.1016/j.measurement.2022.111930.
 
4.
Abbate, E.; Sammartano, G.; Spanò, A. PROSPECTIVE UPON MULTI-SOURCE URBAN SCALE DATA FOR 3D DOCUMENTATION AND MONITORING OF URBAN LEGACIES. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 11–19, doi:10.5194/isprs-archives-XLII-2-W11-11-2019.
 
5.
Cipriani, L.; Bertacchi, S.; Bertacchi, G. AN OPTIMISED WORKFLOW FOR THE INTERACTIVE EXPERIENCE WITH CULTURAL HERITAGE THROUGH REALITY- BASED 3D MODELS: CASES STUDY IN ARCHAEOLOGICAL AND URBAN COMPLEXES. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 427–434, doi:10.5194/isprs-archives-XLII-2-W11-427-2019.
 
6.
Markiewicz, J.; Pilarska, M.; Łapiński, S.; Kaliszewska, A.; Bieńkowski, R.; Cena, A. Quality assessment of the use of a medium format camera in the investigation of wall paintings: An image-based approach. Measurement 2019, 132, 224–237, doi:10.1016/j.measurement.2018.07.001.
 
7.
Gonizzi Barsanti, S.; Remondino, F.; Visintini, D. 3D SURVEYING AND MODELING OF ARCHAEOLOGICAL SITES - SOME CRITICAL ISSUES - ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II, 2–6, doi:10.5194/isprsannals-II-5- W1-145, 2013.
 
8.
Giżyńska, J.; Komorowska, E.; Kowalczyk, M. The comparison of photogrammetric and terrestrial laser scanning methods in the documentation of small cultural heritage object – case study. 2022.
 
9.
Karaszewski, M.; Stępień, M.; Sitnik, R. Two-stage automated measurement process for high-resolution 3D digitisation of unknown objects. Appl. Opt. 2016, 55, 8162–8170, doi:10.1364/AO.55.008162.
 
10.
Alsadik, B.; Gerke, M.; Vosselman, G. Automated camera network design for 3D modeling of cultural heritage objects. J. Cult. Herit. 2013, 14, 515–526, doi:10.1016/j.culher.2012.11.007.
 
11.
Fraser, C.S. Network design. Photogrammetry and Machine Vision; 1996;.
 
12.
Osiński, P.; Markiewicz, J.; Nowisz, J.; Remiszewski, M.; Rasiński, A.; Sitnik, R. A Novel Approach for Dynamic (4d) Multi-View Stereo System Camera Network Design. Sensors 2022, 22, 1576, doi:10.3390/s22041576.
 
13.
Alsadik, B.; Gerke, M.; Vosselman, G.; Daham, A.; Jasim, L. Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects. Sensors 2014, 14, 5785– 5804, doi:10.3390/s140405785.
 
14.
Mahami, H.; Nasirzadeh, F.; Hosseininaveh Ahmadabadian, A.; Esmaeili, F.; Nahavandi, S. Imaging network design to improve the automated construction progress monitoring process. Constr. Innov. 2019, 19, 386–404, doi:10.1108/CI-07-2018-0059.
 
15.
Rahimian, P.; Kearney, J.K. Optimal camera placement for motion capture systems in the presence of dynamic occlusion. In Proceedings of the Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology; ACM: New York, NY, USA, 2015; pp. 129–138.
 
eISSN:2753-4146
Journals System - logo
Scroll to top