ORIGINAL ARTICLE
The generation of high-resolution orthoimages based on TLS data and close-range images – the case study
 
More details
Hide details
1
Warsaw University of Technology, Faculty of Geodesy and Cartography
 
2
Department of Photogrammetry, Remote Sensing and Spatial Information Systems, Faculty of Geodesy and Cartography, Warsaw University of Technology, pl. Politechniki 1, Warsaw 00-661, Poland
 
 
Publication date: 2022-12-01
 
 
Journal of Modern Technologies for Cultural Heritage Preservation 2022;1(1)
 
KEYWORDS
ABSTRACT
The development of high-resolution geometric documentation plays a fundamental role in the conservation works and managing cultural heritage objects. Nowadays, orthoimages are increasingly being used for these purposes, as it is a combination of geometric accuracy (derived, among other things, from terrestrial laser scanning data and/or photogrammetric methods) and visual quality (based on information from images). The objective of this article is present the methodology of orthoimages generation based on the integration of data acquired by the Z+F 5006h terrestrial laser scanner and the Canon EOS 5D Mark II digital camera. In this investigation, the methodology of high-resolution and high-quality orthoimages was presented. The modified version of the Structure-from-Motion processed the data, and MultiView Stereo approaches based on integrating TLS data with close-range images and extended data analysis. The primary objective of the performed works presented in this paper was to optimise the quality of the high-resolution orthoimages
 
REFERENCES (32)
1.
Stylianidis, E.; Remondino, F. 3D Recording, Documentation and Management of Cultural Heritage; 1st ed.; Whittles Publishing, 2017; ISBN 978-1498763035.
 
2.
Stylianidis, E. CIPA - Heritage Documentation: 50 Years: Looking Backwards. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W14, 1–130, doi:10.5194/isprs-archives-XLII-2-W14-1-2019.
 
3.
Remondino, F.; El-Hakim, S. Image-based 3D Modelling: A Review. Photogramm. Rec. 2006, 21, 269–291, doi:10.1111/j.1477-9730.2006.00383.x.
 
4.
Markiewicz, J.; Podlasiak, P.; Zawieska, D. A New Approach to the Generation of Orthoimages of Cultural Heritage Objects—Integrating TLS and Image Data. Remote Sens. 2015, 16963–16985, doi:10.3390/rs71215869.
 
5.
Tobiasz; Markiewicz; Łapiński; Nikel; Kot; Muradov Review of Methods for Documentation, Management, and Sustainability of Cultural Heritage. Case Study: Museum of King Jan III’s Palace at Wilanów. Sustainability 2019, 11, 7046, doi:10.3390/su11247046.
 
6.
Kot, P.; Markiewicz, J.; Muradov, M.; Lapinski, S.; Shaw, A.; Zawieska, D.; Tobiasz, A.; Al-Shamma’a, A. COMBINATION OF THE PHOTOGRAMMETRIC AND MICROWAVE REMOTE SENSING FOR CULTURAL HERITAGE DOCUMENTATION AND PRESERVATION – PRELIMINARY RESULTS. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B2-2, 1409–1413, doi:10.5194/isprs-archives-XLIII- B2-2020-1409-2020.
 
7.
Abbate, E.; Sammartano, G.; Spanò, A. PROSPECTIVE UPON MULTI-SOURCE URBAN SCALE DATA FOR 3D DOCUMENTATION AND MONITORING OF URBAN LEGACIES. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 11–19, doi:10.5194/isprs-archives-XLII-2-W11-11-2019.
 
8.
Cipriani, L.; Bertacchi, S.; Bertacchi, G. AN OPTIMISED WORKFLOW FOR THE INTERACTIVE EXPERIENCE WITH CULTURAL HERITAGE THROUGH REALITY- BASED 3D MODELS: CASES STUDY IN ARCHAEOLOGICAL AND URBAN COMPLEXES. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII- 2/W11, 427–434, doi:10.5194/isprs-archives-XLII-2-W11-427-2019.
 
9.
Heras, V.; Sinchi, E.; Briones, J.; Lupercio, L. URBAN HERITAGE MONITORING, USING IMAGE PROCESSING TECHNIQUES AND DATA COLLECTION WITH TERRESTRIAL LASER SCANNER (TLS), CASE STUDY CUENCA - ECUADOR. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 609–613, doi:10.5194/isprs-archives-XLII-2-W11-609-2019.
 
10.
Markiewicz, J.; Pilarska, M.; Łapiński, S.; Kaliszewska, A.; Bieńkowski, R.; Cena, A. Quality assessment of the use of a medium format camera in the investigation of wall paintings: An image-based approach. Meas. J. Int. Meas. Confed. 2019, 132, doi:10.1016/j.measurement.2018.07.001.
 
11.
Omer, G.; Kot, P.; Atherton, W.; Muradov, M.; Gkantou, M.; Shaw, A.; Riley, M.; Hashim, K.; Al-Shamma’a, A. A non-destructive electromagnetic sensing technique to determine chloride level in maritime concrete. Karbala Int. J. Mod. Sci. 2021, 7, doi:10.33640/2405-609X.2408.
 
12.
Salach, A.; Markiewicz, J.S.; Zawieska, D. Integration of point clouds from terrestrial laser scanning and image-based matching for generating high-resolution orthoimages. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives; 2016; Vol. 41.
 
13.
Arif, R.; Essa, K. EVOLVING TECHNIQUES OF DOCUMENTATION OF A WORLD HERITAGE SITE IN LAHORE. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 33–40, doi:10.5194/isprs-archives-XLII-2-W5-33-2017.
 
14.
Murtiyoso, A.; Koehl, M.; Grussenmeyer, P.; Freville, T. ACQUISITION and PROCESSING PROTOCOLS for UAV IMAGES: 3D MODELING of HISTORICAL BUILDINGS USING PHOTOGRAMMETRY. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences; 2017; Vol. 4, pp. 163–170.
 
15.
Gonizzi Barsanti, S.; Remondino, F.; Visintini, D. 3D SURVEYING AND MODELING OF ARCHAEOLOGICAL SITES - SOME CRITICAL ISSUES -. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II, 2–6, doi:10.5194/isprsannals-II-5- W1-145-2013, 2013.
 
16.
Markiewicz, J.; Lapinski, S.; Bochenska, A.; Muradov, M.; Kot, P. The Integration of The Multi-Source Data for MultiTemporal Investigation of Cultural Heritage Objects. Proc. - Int. Conf. Dev. eSystems Eng. DeSE 2021, 2021-Decem, 63–68, doi:10.1109/DESE54285.2021.9719566.
 
17.
Mavromati, D.; Petsa, E.; Karras, G. Experiences in photogrammetric archaeological recording. Proc. XIX CIPA Int. 2003, 666–669.
 
18.
Sauerbier, M.; Eisenbeiss, H. Uavs for the Documentation of Archaeological Excavations. Proc. Isprs Comm. V Mid-Term Symp. Close Range Image Meas. Tech. 2010, 38, 526–531.
 
19.
Nocerino, E.; Menna, F.; Remondino, F. Multi-Temporal Analysis of Landscapes and Urban Areas. Xxii Isprs Congr. Tech. Comm. Iv 2012, 39-B4, 85–90, doi:10.5194/isprsarchives-XXXIX-B4-85-2012.
 
20.
Muzeum-wilanow.pl, S.I.P.- No Title Available online: http://gis.muzeum- wilanow.pl/wnetrza/.
 
21.
Vosselman, G.; Maas, H.-G. Airborne and Terrestrial Laser Scanning. Current 2010,XXXVI, 318.
 
22.
Markiewicz, J.; Zawieska, D. The influence of the cartographic transformation of TLS data on the quality of the automatic registration. Appl. Sci. 2019, doi:10.3390/app9030509.
 
23.
Quintero, M.S.; Genechten, B. Van; De Bruyne, M.; Poelman, R.; Hankar, M.; Barnes, S.; Caner, H.; Budei, L.; Heine, E.; Reiner, H.; et al. Theory and practice on Terrestrial Laser Scanning; 2008;.
 
24.
Boehler, W.; Marbs, A. Investigating Laser Scanner Accuracy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2003, 34, 696–701, doi:10.1002/pbc.ABSTRACT.
 
25.
Zeibak, R.; Filin, S. Managing Uncertainty in the Detection of Changes From Terrestrial Laser Scanners Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. Vol. XXXVII. Part B5. 2008.
 
26.
Agisoft PhotoScan Available online: http://www.agisoft.com/.
 
27.
Chiabrando, F.; Donadio, E.; Rinaudo, F. SfM for orthophoto generation: Awinning approach for cultural heritage knowledge. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 2015, 40, 91–98, doi:10.5194/isprsarchives-XL-5-W7-91- 2015.
 
28.
Zawieska, D.; Markiewicz, J.; Kopiasz, J. Development of true orthophotomaps of the fortified settlement at Biskupin, Site 4, based on archival data. Archaeol. Prospect. 2019, 26, doi:10.1002/arp.1748.
 
29.
Hartley, R.; Zisserman, A. Multiple view geometry in computer vision; 2003; ISBN 0521540518,9780521540513.
 
30.
Shen, S. Accurate multiple view 3D reconstruction using patch-based stereo for large- scale scenes. IEEE Trans. Image Process. 2013, 22, 1901–1914, doi:10.1109/TIP.2013.2237921.
 
31.
Dominik, W. Exploiting the Redundancy of Multiple Overlapping Aerial Images for Dense Image Matching Based Digital Surface Model Generation. Remote Sens. 2017, 9, 490, doi:10.3390/rs9050490.
 
32.
Markiewicz, J.S.; Podlasiak, P.; Zawieska, D. Attempts to automate the process of generation of orthoimages of objects of cultural heritage. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives; 2015; Vol. 40.
 
eISSN:2753-4146
Journals System - logo
Scroll to top