ORIGINAL ARTICLE
The Example of using long-term monitoring and non-invasive measurements for Structural Health Monitoring. Cause study of St. Anna's Church in Warsaw
 
More details
Hide details
1
Academy of Fine Arts in Warsaw, Faculty of Conservation and Restoration of Works of Art
 
2
Faculty of Geodesy and Cartography, Warsaw University of Technology
 
 
Publication date: 2022-12-08
 
 
Journal of Modern Technologies for Cultural Heritage Preservation 2022;1(1)
 
KEYWORDS
ABSTRACT
Heritage objects are affected by many factors that affect degradation over time and damage to historical sites. For this reason, it is necessary to carry out continuous monitoring using non-invasive techniques for Structural Health Monitoring and plan the conservation works. This article aims to present the results of a project that involved long-term monitoring using surveying techniques such as precise tacheometric measurements, precise levelling, inclinometric measurements and crack measurements using crack gauges. This paper presents the results of multisensor monitoring of displacements and cracks in the building, which contributed to the conservation efforts and prevent works. A research object is St. Anne's Church in Warsaw. It is one of the few in Warsaw that wasn't destroyed during World War II.
 
REFERENCES (49)
1.
ECHOES Heritage Conservation & Regeneration.
 
2.
Stylianidis, E. CIPA - Heritage Documentation: 50 Years: Looking Backwards. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W14, 1–130, doi:10.5194/isprs-archives-XLII-2-W14-1-2019.
 
3.
ICOMOS Recommendations for the analysis, conservation and structural restoration of architectural heritage; 2003;.
 
4.
Clim, D.-A.; Groll, L.; Diaconu, L.-I. Moisture – the Main Cause of the Degradation of Historic Buildings. Bul. Institutului Politeh. Din Iaşi 2017, 63, 65–78.
 
5.
Tobiasz, A.; Markiewicz, J.S.; Lapinski, S.; Nikel, J.; Kot, P.; Muradov, M. Review of Methods for Documentation, Management and Sustainability of Cultural Heritage. Case Study: Museum of King Jan III ’ s Palace at Wilanów. Sustainability 2019, 11, 1–41.
 
6.
Limongelli, M.P.; Turksezer, Z.I.; Giordano, P.F. Structural Health Monitoring for cultural heritage constructions: a resilience perspective. In Proceedings of the Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management; International Association for Bridge and Structural Engineering ({IABSE}), 2019.
 
7.
Guidobaldi, M. (Politecnico di M. Vibration-Based Structural Health Monitoring for Historic Masonry Towers, The Polytechnic University of Milan, 2016.
 
8.
Mesquita, E.; Arêde, A.; Silva, R.; Rocha, P.; Gomes, A.; Pinto, N.; Antunes, P.; Varum, H. Structural health monitoring of the retrofitting process, characterisation and reliability analysis of a masonry heritage construction. J. Civ. Struct. Heal. Monit. 2017, 7, 405– 428, doi:10.1007/s13349-017-0232-9.
 
9.
Rainieri, C.; Magalhaes, F.; Ubertini, F. Automated Operational Modal Analysis and Its Applications in Structural Health Monitoring. Shock Vib. 2019, 2019, 1–3, doi:10.1155/2019/5497065.
 
10.
Magalhães, F.; Cunha, Á. Dynamic Testing and Continuous Monitoring of an Arch Bridge Built in 1940. In Proceedings of the Proceedings of the 5th International Operational Modal Analysis Conference; Guimarães, Portugal.
 
11.
Döhler, M.; Hille, F.; Mevel, L. Vibration-Based Monitoring of Civil Structures with Subspace-Based Damage Detection. In Intelligent Systems, Control and Automation: Science and Engineering; Springer, 2018; pp. 307–326.
 
12.
Rouba, B.J. Conservation Designing. Ochr. Zabyt. 2008, 1, 57–78.
 
13.
Tajchman, J. On the necessity of establishing standards for making projects concerning planned work in architecture monuments; Narodowy Instytut Dziedzictwa, 2014; ISBN 9788363260248.
 
14.
Photogrammetric capture the ‘3 x 3’ rules. Available online: http://www.cipaheritagedocumen...-.
 
15.
content/uploads/2017/02/CIPA 3x3_rules 20131018.pdf (accessed on Dec 6, 2019).
 
16.
Denard, H. The London Charter for the Computer-Based Visualisation of Cultural Heritage. Preamble Objectives Principles; 2009;.
 
17.
Narodowy Instytut Dziedzictwa, N.H.B. of P. Dobre praktyki w zakresie wykonywania dokumentacji zabytków architektury współczesnymi metodami naziemnej rejestracji cyfrowej. 2008, doi:10.1017/CBO9781107415324.004.
 
18.
Campos, M.B.; Tommaselli, A.M.G.; Ivánová, I.; Billen, R. Data product specification proposal for architectural heritage documentation with photogrammetric techniques: A case study in Brazil. Remote Sens. 2015, 7, 13337–13363, doi:10.3390/rs71013337.
 
19.
Kwaśniewski, A. Why research – how to research. Comments on the methodology of contemporary historical and architectural studies and on their application in the adaptation of historic buildings. Architectus 2019, 1, 3–20, doi:10.5277/arc190101.
 
20.
Korpała, M. Konieczność opracowania niezbędnego zakresu bada konserwatorskich jako podstawy ich waloryzacji. In Wartościowanie zabytków architektury; Muzeum Pałac w Wilanowie: Warszawa, 2013; pp. 120–124.
 
21.
Stec, M. Design in conservation and restoration of works of arts. In Proceedings of the Proceedings of 5th EC Conference, Cultural Heritage Research: a Pan–European Challenge; Cracov, Poland; pp. 197–199.
 
22.
Remondino, F.; El-Hakim, S. Image-based 3D Modelling: A Review. Photogramm. Rec. 2006, 21, 269–291, doi:10.1111/j.1477-9730.2006.00383.x.
 
23.
Arif, R.; Essa, K. Evolving Techniques of Documentation of a World Heritage Site in Lahore. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 33–40, doi:10.5194/isprs-archives-XLII-2-W5-33-2017.
 
24.
Gonizzi Barsanti, S.; Remondino, F.; Visintini, D. 3D SURVEYING AND MODELING OF ARCHAEOLOGICAL SITES – SOME CRITICAL ISSUES – ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II-5/W1, 145–150, doi:10.5194/isprsannals-II-5-W1-145-2013.
 
25.
Grussenmeyer, P.; Yasmine, J. Photogrammetry for the Preparation of Archaeological Excavation. A 3D Restitution According to Modern and Archive Images of Beaufort Castle landscape (Lebanon). Int. Arch. Photogramm. Remote Sens. 2004, 809–814.
 
26.
Zapłata, R. Authenticity of historic architecture and palimpsest in the historical space – new media and presentation of the cultural heritage. Architectus 2016, 1, 97–114.
 
27.
Wang, M.L., Lynch, J.P., Sohn, H., Eds.; Sensor Technologies for Civil Infrastructures; Woodhead Publishing, 2014;.
 
28.
Chang, P.C.; Flatau, A.; Liu, S.C. Review Paper: Health Monitoring of Civil Infrastructure. Struct. Heal. Monit. 2003, 2, 257–267, doi:10.1177/1475921703036169.
 
29.
Chong, K.P.; Carino, N.J.; Washer, G. Health monitoring of civil infrastructures. Smart Mater. Struct. 2003, 12.
 
30.
Leach, R. Displacement measurement. Fundam. Princ. Eng. Nanometrology 2014, 95– 132, doi:10.1016/B978-1-4557-7753-2.00005-0.
 
31.
Albedran, H.; Mahmood, D. Cracks Measurement On The Basis Of Machine Vision. Int. J. Video&Image Process. Netw. Secur. IJVIPNS 2016, 16, 1.
 
32.
Markiewicz, J.; Tobiasz, A.; Kot, P.; Muradov, M.; Shaw, A.; Al-Shammaa, A. Review of Surveying Devices for Structural Health Monitoring of Cultural Heritage Buildings. In Proceedings of the 12th International Conference on Developments in eSystems Engineering (DeSE); IEEE, 2019; pp. 597–601.
 
33.
Rajabather, A. INVESTIGATION OF CRACKS IN BUILDINGS. In Proceedings of the FORENSIC STRUCTURAL ENGINEERING; 2016.
 
34.
Martínez-Garrido, M.I.; Fort, R.; Gómez-Heras, M.; Valles-Iriso, J.; Varas-Muriel, M.J. A comprehensive study for moisture control in cultural heritage using non-destructive techniques. J. Appl. Geophys. 2018, 155, 36–52, doi:10.1016/j.jappgeo.2018.03.008.
 
35.
Protimeter SurveyMaster Available online: https://www.protimeter.com/sur....
 
36.
Giuliano, M.; Manzo, C. Spectral Response of Architectural Surface as Support to.
 
37.
Analyses of Materials and Degradation. Preserv. Conserv. Cult. Herit. 2014, 579–590.
 
38.
Delaney, J.K.; Zeibel, J.G.; Thoury, M.; Littleton, R.; Palmer, M.; Morales, K.M.; De La Rie, E.R.; Hoenigswald, A. Visible and infrared imaging spectroscopy of picasso’s harlequin musician: Mapping and identification of artist materials in situ. Appl. Spectrosc. 2010, 64, 584–594, doi:10.1366/000370210791414443.
 
39.
Di Tuccio, M.C.; Ludwig, N.; Gargano, M.; Bernardi, A. Thermographic inspection of cracks in the mixed materials statue: Ratto delle Sabine. Herit. Sci. 2015, 3, doi:10.1186/s40494-015-0041-6.
 
40.
Rymarczyk, T.; Kłosowski, G.; Hoła, A.; Hoła, J.; Sikora, J.; Tchórzewski, P.; Skowron, Ł. Historical Buildings Dampness Analysis Using Electrical Tomography and Machine Learning Algorithms. Energies 2021, 14, 1307, doi:10.3390/en14051307.
 
41.
Fischanger, F.; Catanzariti, G.; Comina, C.; Sambuelli, L.; Morelli, G.; Barsuglia, F.; Ellaithy, A.; Porcelli, F. Geophysical anomalies detected by electrical resistivity tomography in the area surrounding Tutankhamun’s tomb. J. Cult. Herit. 2019, 36, 63– 71, doi:10.1016/j.culher.2018.07.011.
 
42.
Tso, C.-H.M.; Kuras, O.; Wilkinson, P.B.; Uhlemann, S.; Chambers, J.E.; Meldrum, P.I.; Graham, J.; Sherlock, E.F.; Binley, A. Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys. J. Appl. Geophys. 2017, 146, 103–119, doi:10.1016/j.jappgeo.2017.09.009.
 
43.
Sass, O.; Viles, H.A. How wet are these walls? Testing a novel technique for measuring.
 
44.
moisture in ruined walls. J. Cult. Herit. 2006, 7, 257–263, doi:10.1016/j.culher.2006.08.001.
 
45.
Klewe, T.; Strangfeld, C.; Kruschwitz, S. Review of moisture measurements in civil engineering with ground penetrating radar – Applied methods and signal features. Constr. Build. Mater. 2021, 278, 122250, doi:10.1016/j.conbuildmat.2021.122250.
 
46.
Wutke, M.K. Use of Ground Penetrating Radar measurement combined to resistivity measurement for characterisation of the concrete moisture. In Proceedings of the 2018 17th International Conference on Ground Penetrating Radar (GPR); IEEE, 2018; pp. 1–7.
 
47.
Malarski, R.; Grzyb, M.; Kowalska, M.; Łapinski, S.; Pasik, M. Investigations horizontal and vertical displacements St.Ann’s Academic Church in Warsaw; Warsaw, 2017;( unpublished).
 
48.
Malarski, R.; Nagórski, K. Inwentaryzacja spękań i wyznaczanie zmian ich szerokości w obiektach zabytkowych. Przegląd Geod. 2013, 5.
 
49.
Markiewicz, J.; Górecka, K.; Zawieska, D.; Zieliński, M.; Łapiński, S.; Kot, P. THE INTEGRATION OF THE MULTI-TEMPORAL CONSERVATION WORKS AND NON- INVASIVE MEASUREMENTS. 2022, XLVI, 2–4.
 
eISSN:2753-4146
Journals System - logo
Scroll to top