ORIGINAL ARTICLE
Methodology of spatial modelling and visualisation of remains of the fortified Lusatian settlement in Biskupin based on archival data
 
More details
Hide details
1
Documentation and Digitalization Department, Museum of King Jan III’s Palace at Wilanów, Warsaw, Poland
 
2
Warsaw University of Technology, Faculty of Geodesy and Cartography
 
3
Department of Science and Research, Archaeological Museum in Biskupin, Gąsawa, Poland
 
 
Publication date: 2022-12-01
 
 
Journal of Modern Technologies for Cultural Heritage Preservation 2022;1(1)
 
KEYWORDS
ABSTRACT
The fortified settlement in Biskupin, Poland, is a widely known example of a prehistoric Lusatian fortified settlement in which well-preserved remains were discovered in 1934. During archaeological excavations from 1934 to 1974, extensive documentation was acquired, including drawings and photographs. However, during the II World War, its significant part was lost, and consequently, the documentation available today is incomplete, usually lacking information about the relative vertical position of the remains, which is crucial for chronological and functional analyses. This work presents a methodology for generating 3D models and visualizations based on the aforementioned archival documentation. For this purpose, the “general-to-specific” approach was applied, exploiting four methods varying in accuracy and level of detail: Structure-from-Motion together with Multi-View Stereo, the variation of Shape-from-Shading technique and 3D modelling based on single photographs and drawings. The article covers the advantages and limitations of each method and evaluates their applicability in archaeological analyses. This work is related to the research presented in [1–3]. However, the objective of this research is a thorough analysis of mentioned 3D documentation methods and their evaluation with regard to archaeological analyses. Furthermore, unlike in [1], this study concerns the use of terrestrial and low-altitude archival images for the documentation of separate artefacts.
 
REFERENCES (104)
1.
Zawieska, D.; Markiewicz, J.; Kopiasz, J. Development of True Orthophotomaps of the Fortified Settlement at Biskupin, Site 4, Based on Archival Data. Archaeological Prospection 2019, 26, 333–360, doi:10.1002/arp.1748.
 
2.
Zawieska, D.; Markiewicz, J.S.; Kopiasz, J.; Tazbir, J.; Tobiasz, A. 3D Modelling of the Lusatian Borough in Biskupin Using Archival Data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 2017, 42, 665–669, doi:10.5194/isprs-archives-XLII-2-W3-665-2017.
 
3.
Kopiasz, J. Wybrane Aspekty Digitalizacji Dokumentacji Rysunkowej i Wizualizacji Przestrzennej Reliktów Osady Obronnej z Wczesnej Epoki Żelaza Na Stanowisku 4 w Biskupinie. Cyfrowe spotkania z zabytkami 2016, 5, 79–92.
 
4.
Siebke, I.; Campana, L.; Ramstein, M.; Furtwängler, A.; Hafner, A.; Lösch, S. The Application of Different 3D-Scan-Systems and Photogrammetry at an Excavation — A Neolithic Dolmen from Switzerland. Digital Applications in Archaeology and Cultural Heritage 2018, 10, e00078, doi:10.1016/j.daach.2018.e00078.
 
5.
3D Recording and Modelling in Archaeology and Cultural Heritage: Theory and Best Practices: Theory and Best Practices; Remondino, F., Campana, S., Eds.; University of Michigan Press: Ann Arbor, MI, 2014; ISBN 978-1-4073-1230-9.
 
6.
Bewley, R.H. Aerial Survey for Archaeology. Photogrammetric Record 2003, 273–292.
 
7.
Verhoeven, G. Are We There Yet? A Review and Assessment of Archaeological Passive Airborne Optical Imaging Approaches in the Light of Landscape Archaeology. Geosciences 2017, 7, 86, doi:10.3390/geosciences7030086.
 
8.
Cowley, D.; Ferguson, L. Historic Aerial Photographs for Archaeology and Heritage Management. Space, Time, Place. 3rd International Conference on Remote Sensing in Archaeology 2010, 97–104.
 
9.
Archaeological Archives Available online: https://researchphotographs.pr... (accessed on 22 March 2021).
 
10.
Harris, E.C. Principles of Archaeological Stratigraphy; Studies in archaeological science; Academic Press: London, 1979; ISBN ISBN 0-12-326650-5. 14. Schultze, J. Haithabu - Die Siedlungsgrabungen: I. Methoden und Möglichkeiten der Auswertung; Die Ausgrabungen in Haithabu; 1st ed.; Wachholtz: Neumünster, 2008; Vol. 13; ISBN 978-3-529-01413-0.
 
11.
Remondino, F. Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning. Remote Sensing 2011, 3, 1104–1138, doi:10.3390/rs3061104.
 
12.
McCarthy, J. Multi-Image Photogrammetry as a Practical Tool for Cultural Heritage Survey and Community Engagement. Journal of Archaeological Science 2014, 43, 175–185, doi:10.1016/j.jas.2014.01.010.
 
13.
Pritchard, D.; Sperner, J.; Hoepner, S.; Tenschert, R. Terrestrial Laser Scanning for Heritage Conservation: The Cologne Cathedral Documentation Project. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences 2017, IV-2/W2, 213–220, doi:10.5194/isprs-annals-IV-2-W2-213-2017.
 
14.
Aicardi, I.; Chiabrando, F.; Maria Lingua, A.; Noardo, F. Recent Trends in Cultural Heritage 3D Survey: The Photogrammetric Computer Vision Approach. Journal of Cultural Heritage 2018, doi:10.1016/j.culher.2017.11.006.
 
15.
Roncella, R.; Re, C.; Forlani, G. Performance Evaluation of a Structure and Motion Strategy in Architecture and Cultural Heritage. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2012, XXXVIII-5/W16, 285–292, doi:10.5194/isprsarchives-XXXVIII-5-W16-285-2011.
 
16.
Chiabrando, F.; Donadio, E.; Rinaudo, F. SfM for Orthophoto to Generation: A Winning Approach for Cultural Heritage Knowledge. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2015, XL- 5/W7, 91–98, doi:10.5194/isprsarchives-XL-5-W7-91-2015.
 
17.
Brandolini, F.; Patrucco, G. Structure-from-Motion (SFM) Photogrammetry as a Non-Invasive Methodology to Digitalize Historical Documents: A Highly Flexible and Low-Cost Approach? Heritage 2019, 2, 2124–2136, doi:10.3390/heritage2030128.
 
18.
Barazzetti, L.; Remondino, F.; Scaioni, M. Automated and Accurate Orientation of Complex Image Sequences. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2012, XXXVIII-5/W16, 277–284, doi:10.5194/isprsarchives-XXXVIII-5-W16-277-2011.
 
19.
Bianco, S.; Ciocca, G.; Marelli, D. Evaluating the Performance of Structure from Motion Pipelines. Journal of Imaging 2018, 4, 98, doi:10.3390/jimaging4080098.
 
20.
Callieri, M.; Dell’Unto, N.; Dellepiane, M.; Scopigno, R.; Soderberg, B.; Larsson, L. Documentation and Interpretation of an Archeological Excavation: An Experience with Dense Stereo Reconstruction Tools.; The Eurographics Association 2011; pp. 33–40.
 
21.
Lieberwirth, U.; Fritsch, B.; Metz, M.; Neteler, M.; Kühnle, K. Applying Low Budget Equipment And Open Source Software For High Resolution Documentation Of Archaeological Stratigraphy And Features.; Traviglia, A., Ed.; Amsterdam University Press: Perth, 2015.
 
22.
Gonizzi Barsanti, S.; Remondino, F.; Visintini, D. 3D SURVEYING AND MODELING OF ARCHAEOLOGICAL SITES – SOME CRITICAL ISSUES – ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences 2013, II-5/W1, 145–150, doi:10.5194/isprsannals-II-5-W1-145-2013.
 
23.
Remondino, F.; Menna, F. Image-Based Surface Measurement for Close- Range Heritage Documentation. 2008, doi:10.3929/ETHZ-B-000011994.
 
24.
Vu, H.-H.; Labatut, P.; Pons, J.-P.; Keriven, R. High Accuracy and Visibility- Consistent Dense Multiview Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 2012, 34, 889–901, doi:10.1109/TPAMI.2011.172.
 
25.
Saponaro, P.; Sorensen, S.; Rhein, S.; Mahoney, A.R.; Kambhamettu, C. Reconstruction of Textureless Regions Using Structure from Motion and Image-Based Interpolation. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP); IEEE: Paris, France, October 2014; pp. 1847–1851.
 
26.
Remondino, F.; Spera, M.G.; Nocerino, E.; Menna, F.; Nex, F. State of the Art in High Density Image Matching. The Photogrammetric Record 2014, 29, 144–166, doi:10.1111/phor.12063.
 
27.
Hafeez, J.; Jeon, H.-J.; Hamacher, A.; Kwon, S.-C.; Lee, S.-H. The Effect of Patterns on Image-Based Modelling of Texture-Less Objects. Metrology and Measurement Systems 2018, 25, 755–767, doi:10.24425/MMS.2018.124883.
 
28.
Goesele, M.; Curless, B.; Seitz, S.M. Multi-View Stereo Revisited. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2 (CVPR’06); IEEE: New York, NY, USA, 2006; Vol. 2, pp. 2402–2409.
 
29.
Stathopoulou, E.-K.; Remondino, F. Semantic Photogrammetry Boosting Image-Based 3D Reconstruction with Semantic Labelling. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2019, XLII-2/W9, 685–690, doi:10.5194/isprs-archives-XLII-2-W9-685-2019.
 
30.
Rinaudo, F.; Chiabrando, F.; Lingua, A.; Spanò, A. Archaeological Site Monitoring: UAV Photogrammetry Can Be an Answer. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2012, XXXIX-B5, 583–588, doi:10.5194/isprsarchives-XXXIX-B5-583-2012.
 
31.
Ebolese, D.; Lo Brutto, M.; Dardanelli, G. UAV Survey for the Archaeological Map of Lilybaeum (Marsala, Italy). ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2019, XLII- 2/W11, 495–502, doi:10.5194/isprs-archives-XLII-2-W11-495-2019.
 
32.
Chiabrando, F.; D’Andria, F.; Sammartano, G.; Spanò, A. UAV Photogrammetry for Archaeological Site Survey. 3D Models at the Hierapolis in Phrygia (Turkey). Virtual Archaeology Review 2018, 9, 28, doi:10.4995/var.2018.5958.
 
33.
Barba, S.; Barbarella, M.; Di Benedetto, A.; Fiani, M.; Gujski, L.; Limongiello, M. Accuracy Assessment of 3D Photogrammetric Models from an Unmanned Aerial Vehicle. Drones 2019, 3, 79, doi:10.3390/drones3040079.
 
34.
Doneus, M.; Verhoeven, G.; Fera, M.; Briese, Ch.; Kucera, M.; Neubauer, W. From Deposit to Point Cloud – a Study of Low-Cost Computer Vision Approaches for the Straightforward Documentation of Archaeological Excavations. Geoinformatics FCE CTU 2011, 6, 81–88, doi:10.14311/gi.6.11.
 
35.
Wulf, R.; Sedlazeck, A.; Koch, R. 3D Reconstruction of Archaeological Trenches from Photographs. In Scientific Computing and Cultural Heritage; Bock, H.G., Jäger, W., Winckler, M.J., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; Vol. 3, pp. 273–281 ISBN 978-3-642-28020-7.
 
36.
De Reu, J.; De Smedt, P.; Herremans, D.; Van Meirvenne, M.; Laloo, P.; De Clercq, W. On Introducing an Image-Based 3D Reconstruction Method in Archaeological Excavation Practice. Journal of Archaeological Science 2014, 41, 251– 262, doi:10.1016/j.jas.2013.08.020.
 
37.
Drap, P. Underwater Photogrammetry for Archaeology. In Special Applications of Photogrammetry; Da Silva, D.C., Ed.; InTech, 2012 ISBN 978-953-51-0548-0.
 
38.
Teague, J.; Scott, T.B. Underwater Photogrammetry and 3D Reconstruction of Submerged Objects in Shallow Environments by ROV and Underwater GPS. Journal of Marine Science Research & Technology 2017, 1, 8.
 
39.
Gajski, D.; Solter, A.; Gašparovic, M. APPLICATIONS OF MACRO PHOTOGRAMMETRY IN ARCHAEOLOGY. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2016, XLI-B5, 263–266, doi:10.5194/isprsarchives-XLI-B5-263-2016.
 
40.
Sapirstein, P. A High-Precision Photogrammetric Recording System for Small Artifacts. Journal of Cultural Heritage 2018, 31, 33–45, doi:10.1016/j.culher.2017.10.011.
 
41.
Wernke, S.A.; Adams, J.A.; Hooten, E.R. Capturing Complexity: Toward an Integrated Low-Altitude Photogrammetry and Mobile Geographic Information System Archaeological Registry System. Advances in Archaeological Practice 2014, 2, 147– 163, doi:10.7183/2326-3768.2.3.147.
 
42.
Cerrillo-Cuenca, E.; Sanjosé, J.J. Mapping and Interpreting Vanished Archaeological Features Using Historical Aerial Photogrammes and Digital Photogrammetry. Proceedings of the 38th Annual Conference on Computer Applications and Quantitative Methods in Archaeology, CAA2010 2010, 43–46.
 
43.
Nocerino, E.; Menna, F.; Remondino, F. Multi-Temporal Analysis of Landscapes and Urban Areas. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2012, XXXIX-B4, 85–90, doi:10.5194/isprsarchives-XXXIX-B4-85-2012.
 
44.
Sevara, C.; Verhoeven, G.; Doneus, M.; Draganits, E. Surfaces from the Visual Past: Recovering High-Resolution Terrain Data from Historic Aerial Imagery for Multitemporal Landscape Analysis. Journal of Archaeological Method and Theory 2018, 25, 611–642, doi:10.1007/s10816-017-9348-9.
 
45.
Pacina, J.; Cajthaml, J. Historical Data Processing, Modelling, Reconstruction, Analysis and Visualization of Historical Landscape in the Region of North-West Bohemia. In Modern Trends in Cartography; Brus, J., Vondrakova, A., Vozenilek, V., Eds.; Springer International Publishing: Cham, 2015; pp. 477–488 ISBN 978-3-319- 07925-7.
 
46.
Grussenmeyer, P.; Yasmine, J. Photogrammetry for the Preparation of Archaeological Excavation. A 3D Restitution According to Modern and Archive Images of Beaufort Castle Landscape (Lebanon).; Istanbul, Turkey, 2004; pp. 809–814.
 
47.
Bitelli, G.; Dellapasqua, M.; Girelli, V.A.; Sbaraglia, S.; Tinia, M.A. HISTORICAL PHOTOGRAMMETRY AND TERRESTRIAL LASER SCANNING FOR THE 3D VIRTUAL RECONSTRUCTION OF DESTROYED STRUCTURES: A CASE STUDY IN ITALY. In Proceedings of the ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Copernicus GmbH, May 12 2017; Vol. XLII-5-W1, pp. 113–119.
 
48.
Heuvel, F. Object Reconstruction from a Single Architectural Image Taken with an Uncalibrated Camera. Photogrammetrie Fernerkundung Geoinformation 2001, 4.
 
49.
Hemmleb, M. Digital Rectification of Historical Images. CIPA International Symposium, Olinda, published on CD-ROM and in prin 6.
 
50.
Sevara, C. Capturing the Past for the Future: An Evaluation of the Effect of Geometric Scan Deformities on the Performance of Aerial Archival Media in Image- Based Modelling Environments: Capturing the Past for the Future. Archaeological Prospection 2016, 23, 325–334, doi:10.1002/arp.1539.
 
51.
Clarke, T.A.; Fryer, J.G. The Development of Camera Calibration Methods and Models. The Photogrammetric Record 1998, 16, 51–66, doi:10.1111/0031- 868X.00113.
 
52.
Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle Adjustment — A Modern Synthesis. In Vision Algorithms: Theory and Practice; Triggs, B., Zisserman, A., Szeliski, R., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2000; Vol. 1883, pp. 298–372 ISBN 978-3-540-67973-8.
 
53.
Remondino, F.; Fraser, C. Digital Camera Calibration Methods: Considerations and Comparisons. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2006, 36, 266–272, doi:10.3929/ethz-b-000158067.
 
54.
Caprile, B.; Torre, V. Using Vanishing Points for Camera Calibration. International Journal of Computer Vision 1990, 4, 127–139, doi:10.1007/BF00127813.
 
55.
Heuvel, F.A.V.D. Estimation Of Interior Orientation Parameters From. Int. Arch. Photogrammetry & Remote Sensing 1999, 32, 81–88.
 
56.
Wildenauer, H.; Hanbury, A. Robust Camera Self-Calibration from Monocular Images of Manhattan Worlds. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition; IEEE: Providence, RI, June 2012; pp. 2831–2838.
 
57.
Bräuer-Burchardt, C.; Voss, K. Façade Reconstruction of Destroyed Buildings Using Historical Photographs. In Proceedings of the Proc. 19 th CIPA Int. Symp., Potsdam; 2001; pp. 543–550.
 
58.
Chen, Y.; Ip, H.; Huang, Z.; Wang, G. Full Camera Calibration from a Single View of Planar Scene. In Advances in Visual Computing; Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008; Vol. 5358, pp. 815–824 ISBN 978-3-540-89638-8.
 
59.
Teramoto, H.; Xu, G. Camera Calibration by a Single Image of Balls: From Conics to the Absolute Conic. Proc. of 5th Asian Conference on Computer Vision 2002, 499–506.
 
60.
Xu, G.; Zheng, A.; Li, X.; Su, J. A Method to Calibrate a Camera Using Perpendicularity of 2D Lines in the Target Observations. Scientific Reports 2016, 6, doi:10.1038/srep34951.
 
61.
Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 2000, 22, 1330–1334, doi:10.1109/34.888718.
 
62.
Zhang, Z. Camera Calibration with One-Dimensional Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 2004, 26, 892–899, doi:10.1109/TPAMI.2004.21.
 
63.
Große, M. Camera Calibration Using Time-Coded Planar Patterns. Optical Engineering 2012, 51, 083604, doi:10.1117/1.OE.51.8.083604.
 
64.
Hanke, K.; Moser, M.; Rampold, R. Historic Photos and TLS Data Fusion for the 3D Reconstruction of a Monastery Altar Ensemble. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2015, XL- 5/W7, 201–206, doi:10.5194/isprsarchives-XL-5-W7-201-2015.
 
65.
Kalisperakis, I.; Rova, M.; Petsa, E.; Karras, G.E. On Multi-Image Reconstruction from Historic Photographs.; Antalya, Turkey, 30 September - 4 October 2003, 2003; pp. 216–219.
 
66.
Guidi, G.; Micoli, L.; Gonizzi Barsanti, S.; Malik, U. The CHT2 Project: Diachronic 3D Reconstruction of Historic Sites. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2017, XLII-2/W5, 309–316, doi:10.5194/isprs-archives-XLII-2-W5-309-2017.
 
67.
Canciani, M.; Saccone, M. THE REPRESENTATION OF CULTURAL HERITAGE FROM TRADITIONAL DRAWING TO 3D SURVEY: THE CASE STUDY OF CASAMARY’S ABBEY. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2016, XLI-B5, 199–205, doi:10.5194/isprsarchives-XLI-B5-199-2016.
 
68.
Caroti, G.; Zaragoza, I.M.-E.; Piemonte, A. Historical Data of Laser Scanning and Photogrammetry for the Knowledge and Memory Plan of Cultural Heritage.; Italy, December 4 2019; pp. 136–141.
 
69.
Horn, B.K.P. Shape From Shading: A Method for Obtaining the Shape of a Smooth Opaque Object From One View. PhD, Massachusetts Institute of Technology: Massachusetts, 1970.
 
70.
Wang, G.; Tsui, H.-T.; Hu, Z.; Wu, F. Camera Calibration and 3D Reconstruction from a Single View Based on Scene Constraints. Image and Vision Computing 2005, 23, 311–323, doi:10.1016/j.imavis.2004.07.008.
 
71.
Streilein, A.; Heuvel, F.V.D. Potential and Limitation for the 3D Documentation of Cultural Heritage. Proceedings XVII CIPA Symposium October 1999, 99.
 
72.
Oswald, M.R.; Töppe, E.; Nieuwenhuis, C.; Cremers, D. A Review of Geometry Recovery from a Single Image Focusing on Curved Object Reconstruction. In Innovations for Shape Analysis; Breuß, M., Bruckstein, A., Maragos, P., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp. 343–378 ISBN 978-3-642-34140-3.
 
73.
Tatarchenko, M.; Richter, S.R.; Ranftl, R.; Li, Z.; Koltun, V.; Brox, T. What Do Single-View 3D Reconstruction Networks Learn? arXiv:1905.03678 [cs] 2019.
 
74.
Hoiem, D.; Efros, A.A.; Hebert, M. Automatic Photo Pop-Up. In Proceedings of the ACM SIGGRAPH 2005 Papers; Association for Computing Machinery: New York, NY, USA, 2005; pp. 577–584.
 
75.
Lee, K.M.; Kuo, C.-C.J. Shape from Shading with a Generalized Reflectance Map Model. Computer Vision and Image Understanding 1997, 67, 143–160, doi:10.1006/cviu.1997.0522.
 
76.
Prados, E.; Faugeras, O. Shape from Shading: A Well-Posed Problem? In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05); IEEE: San Diego, CA, USA, 2005; Vol. 2, pp. 870– 877.
 
77.
Abada, L.; Aouat, S. A Machine Learning Approach for Shape From Shading. In Proceedings of the arXiv:1607.03284 [cs]; Guelma, Algeria., 2013.
 
78.
Ruo Zhang; Ping-Sing Tsai; Cryer, J.E.; Shah, M. Shape-from-Shading: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 1999, 21, 690–706, doi:10.1109/34.784284.
 
79.
Daum, M.; Dudek, G. On 3-D Surface Reconstruction Using Shape from Shadows. In Proceedings of the Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231); IEEE Comput. Soc: Santa Barbara, CA, USA, 1998; pp. 461–468.
 
80.
Yu, Y.; Chang, J.T. Shadow Graphs and 3D Texture Reconstruction. International Journal of Computer Vision 62, 30–60, doi:https://doi.org/10.1007/s11263....
 
81.
Abrams, A.; Miskell, K.; Pless, R. The Episolar Constraint: Monocular Shape from Shadow Correspondence. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition; IEEE: Portland, OR, USA, June 2013; pp. 1407–1414.
 
82.
Favaro, P.; Soatto, S. Learning Shape from Defocus. In Computer Vision — ECCV 2002; Heyden, A., Sparr, G., Nielsen, M., Johansen, P., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2002; Vol. 2351, pp. 735–745 ISBN 978-3-540-43744- 4.
 
83.
Aydin, T.; Akgul, Y.S. A New Adaptive Focus Measure for Shape From Focus. In Proceedings of the Procedings of the British Machine Vision Conference 2008; British Machine Vision Association: Leeds, 2008; p. 8.1-8.10.
 
84.
Pertuz, S.; Puig, D.; Garcia, M.A. Analysis of Focus Measure Operators for Shape-from-Focus. Pattern Recognition 2013, 46, 1415–1432, doi:10.1016/j.patcog.2012.11.011.
 
85.
Wilczkowiak, M.; Boyer, E.; Sturm, P. Camera Calibration and 3D Reconstruction from Single Images Using Parallelepipeds. In Proceedings of the Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001; IEEE Comput. Soc: Vancouver, BC, Canada, 2001; Vol. 1, pp. 142–148.
 
86.
Aguilera, D.G.; Gómez Lahoz, J.; Finat Codes, J. Sv3dvision: 3d Reconstruction and Visualization from a Single View. ISPRS Commission V, WG 2 2005.
 
87.
Criminisi, A. Accurate Visual Metrology from Single and Multiple Uncalibrated Images; Springer London: London, 2001; ISBN 978-1-4471-1040-8.
 
88.
Sturm, P.F.; Maybank, S.J. A Method for Interactive 3D Reconstruction of Piecewise PlanarObjects from Single Images. In Proceedings of the Procedings of the British Machine Vision Conference 1999; British Machine Vision Association: Nottingham, 1999; p. 27.1-27.10.
 
89.
Saxena, A.; Chung, S.H.; Ng, A.Y. Learning Depth from Single Monocular Images. 8.
 
90.
Gur, S.; Wolf, L. Single Image Depth Estimation Trained via Depth From Defocus Cues. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); IEEE: Long Beach, CA, USA, June 2019; pp. 7675– 7684.
 
91.
Anwar, S.; Hayder, Z.; Porikli, F. Depth Estimation and Blur Removal from a Single Out-of-Focus Image. In Proceedings of the Procedings of the British Machine Vision Conference 2017; British Machine Vision Association: London, UK, 2017.
 
92.
Zhao, R.; Wang, Y.; Martinez, A. A Simple, Fast and Highly-Accurate Algorithm to Recover 3D Shape from 2D Landmarks on a Single Image. arXiv:1609.09058 [cs] 2016.
 
93.
Wang, J.; Sun, B.; Lu, Y. MVPNet: Multi-View Point Regression Networks for 3D Object Reconstruction from A Single Image. arXiv:1811.09410 [cs] 2018.
 
94.
Mees, O.; Tatarchenko, M.; Brox, T.; Burgard, W. Self-Supervised 3D Shape and Viewpoint Estimation from Single Images for Robotics. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); IEEE: Macau, China, November 2019; pp. 6083–6089.
 
95.
Michalkiewicz, M.; Parisot, S.; Tsogkas, S.; Baktashmotlagh, M.; Eriksson, A.; Belilovsky, E. Few-Shot Single-View 3-D Object Reconstruction with Compositional Priors. arXiv:2004.06302 [cs] 2020.
 
96.
Kostrzewski, J. Osada Bagienna w Biskupinie, w Pow. Żnińskim. Przegląd Archeologiczny 1936, 5, 121–140.
 
97.
Piotrowski, W. 50 lat badań w Biskupinie. In Prahistoryczny gród w Biskupinie. Problematyka osiedli obronnych na początku epoki żelaza; Jaskanis, J., Ed.; Warszawa, 1991; pp. 81–105.
 
98.
Kopiasz, J. Dokumentacja archiwalna osady z wczesnej epoki żelaza na stanowisku 4 w Biskupinie i jej cyfrowa integracja. 2015, 49.
 
99.
Ważny, T. Dendrochronologia drewna biskupińskiego, czyli co drzewa zapisały w przyrostach rocznych. In Stan i perspektywy zachowania drewna biskupińskiego; Babiński, L., Ed.; Biskupin, 2009; pp. 63–76.
 
100.
Piotrowski, W. Współpraca w Biskupinie z przedstawicielami nauk technicznych i niektórych przyrodniczych. In Badacze Biskupina; Piotrowski, W., Grossman, A., Eds.; Biskupin, 2005; pp. 181–221.
 
101.
Kostrzewski, J. Biskupin: An Early Iron Age Village in Western Poland. Antiquity 1938, 12, 311–317.
 
102.
Rajewski, Z. Sprawozdanie z organizacji prac w Biskupinie w pow. żnińskim w latach 1938-1939 i 1946-1948. In III Sprawozdanie z prac wykopaliskowych w grodzie kultury łużyckiej w Biskupinie w powiecie żnińskim za lata 1938-1939 i 1946-1948; Kostrzewski, J., Ed.; Poznań, 1950; pp. 1–11.
 
103.
Kopiasz, J.; Drzewicz, A.; Grochulska, A.; Piotrowska, K. Archiwalna dokumentacja fotograficzna i jej znaczenie w badaniach struktur zabudowy grodu z wczesnej epoki żelaza na stanowisku 4 w Biskupinie. 2017, 30.
 
104.
Kostrzewski, J. III Sprawozdanie z Prac Wykopaliskowych w Grodzie Kultury Łużyckiej w Biskupinie w Powiecie Żnińskim Za Lata 1938-1939 i 1946-1948: Praca Zbiorowa; Polskie Towarzystwo Prehistoryczne: Poznań, 1950.
 
eISSN:2753-4146
Journals System - logo
Scroll to top